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A technique for deriving a finite-difference scheme to solve initial value partial- 
differential equations is presented. The set of partial-differential equations is assumed to 
possess one or more invariant integral quantities. In fluid dynamics, the integral of the 
total energy over the domain is frequently assumed invariant. This technique is based on 
the variational method and constrains the finite-difference. scheme to satisfy the con- 
servation law(s). The technique is discussed by considering, as an example, a set of 
linear, shallow-water equations on a rotating plane, and extending it to a nonlinear 
case. 

1. INTRODUCTION 

The success of the numerical simulation of fluid dynamics and geophysical 
fluid dynamics, depends upon the proper design of a numerical finite-difference 
scheme for the integration of the governing differential equations. Beyond the 
problems of consistency, convergence, and stability of solutions (Richtmyer [IO]) is 
another problem that arises when the governing differential equations have an 
auxiliary condition(s) which is expressed as an integral invariant(s). The integral 
invariant(s) in fluid and geophysical fluid dynamics is often represented by a 
conservation law(s). A numerically integrated solution of finite-difference equations 
may be obtained without considering the auxiliary conservation law(s), but the 
solution may violate the conservation condition (Lax and Wendroff [7]). 

Arakawa [l] pointed out the importance of developing a scheme to conserve 
quadratic quantities such as kinetic energy in atmospheric prediction models. In 
the words of Arakawa [l], “When quadratic quantities are conserved in a finite- 
difference scheme, nonlinear computational instability cannot occur. This follows 
from the fact if the square of a quantity is conserved with time when summed up 
over all the grid points in the domain, the quantity itself will be bounded, at every 
individual grid point, throughout the entire period of integration.” The computa- 
tional instability is caused by the growth of error due to aliasing (Phillips, [9]). It 
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should be noted, however, that while quadratic conservation schemes are able to 
put a bound on the amplitude of noise waves, they are not able to control their 
phase. In spite of this limitation, considerable effort has been made to satisfy the 
conservation principles when designing finite-difference approximations of the 
governing differential equations. Arakawa [l] has developed a spatial finite- 
difference scheme for the two-dimensional vorticity equation that retains the 
integral invariants of the continuous system. The integral invariants are kinetic 
energy, squared vorticity (enstrophy) and vorticity. Lilly [8] developed a finite- 
difference form of the nonlinear terms for two-dimensional barotropic flow which 
retains spatial momentum and total energy conservation. Smagorinsky, Manabe, 
and Holloway [17] used it in their general circulation model. A generalized version 
of the Arakawa scheme for a shallow-water fluid is given by Grammeltvedt [3]. 
Shuman [15] and Shuman and Vanderman [16] developed a scheme that 
for practical purposes conserves total energy. Energy conserving schemes have also 
been developed individually by Bryan [2], Grimmer and Shaw [4] and 
Kurihara and Holloway [6] for curvilinear grids. Grammeltvedt [3] presented 
a detailed discussion and very useful comparison among the schemes used in 
numerical weather prediction. A comprehensive review of fluid dynamical schemes 
was given by Roache [ 111. 

All of these conservation schemes are in rather complicated finite-difference 
forms which are difficult to extend to some fluid dynamically sophisticated problems 
of interest. For instance, complication arises in trying to impose the conservation 
requirements on implicit or semi-implicit differencing schemes. None of the existing 
so-called “conservation schemes” strictly satisfies the required conservation law(s) 
for long time integrations, as demonstrated by Grammeltvedt [3]. It is highly 
desirable, therefore, that a systematic approach for designing simple conservative 
numerical schemes be developed, explicitly enforcing the required conservation 
relationships. The following approach is based on the variational method (Sasaki 
[12, 131, Stephens [18]). 

2. VARIATIONAL DESIGN I (WITH A LINEAR MODEL) 

As an example, we consider the motion of shallow-water gravity waves on a 
rotating plane, under the condition that the total energy is conserved. First, for 
simplicity, the linearized governing equations (Haltiner [5]) are considered: 

and 

(au/at) - fv = 0, (1) 
@v/~t) +fu + g(ww = 0, (2) 

(ahpr) + H(av/ay) = 0. (3) 
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In these equationsf, g, and Hare the Coriolis parameter, the gravity acceleration, 
and the mean depth of the shallow fluid, respectively; t is time; x and y are Cartesian 
space coordinates; u and u are, respectively, the x and y components of water 
particle velocity. The elevation of the free water surface, measured from the mean 
height, is designated by h. The first and second equations are the linearized per- 
turbation equations of motion, which are derived by assuming that the mean state 
is a motionless, homogeneous layer of water and the perturbations U, u, and h are 
uniform in the x direction. 

This shallow water system conserves the total energy (the integral along y of the 
perturbation kinetic energy H(u2 + v”)/2 and available potential energy gh2/2) 
when no energy accumulation occurs due to net total energy fluxes through the 
lateral boundaries 4’ = y1 and y2 . In the domain bounded by the lateral boundary, 
the total energy conservation is written 

s 1Jt 
[(H/2)(u2 + 0’) + (g/2) h21 4~ = CT), 

Yl 
where (T) is a constant. This invariant law is the most important equation which 
will be used in designing a new numerical scheme. 

The set of Eqs. (l)-(3) will be solved as an initial value problem by specifying 
initial conditions for U, a, and h. Let us place a lattice on the time and space ( JJ) 
domain. The time and space intervals of the lattice are designated by At and dy 
respectively. A point of the lattice is represented by IZ and j which denote the nth 
time level and thejth space location, respectively, and U, o, and h are assigned to all 
points of the lattice. Then we choose a finite difference analogue of (l)-(3). 

The variables at the (n + 1)th time level are determined by this set of finite- 
difference equations when the variables at the nth time level are all known. These 
predicted variables are denoted by G, 6, and L. They are determined uniquely 
without considering the requirement of total energy conservation (4) which is 
satisfied by the true solution of the differential equations (l)-(3). Since the ti, 5 and 
& may contain truncation error, we should be allowed to adjust them slightly to 
satisfy the required conservation law. The total energy (TE) computed from 
C, 5, and 6, 

does not satisfy the conservation law (4), 

TE # To (6) 

where To is TE at t = 0 and x represents a summation over all gridpoints along 
y. It is now conceivable to attempt to modify u’, 6, and 1; to satisfy the energy con- 
servation at each time step. 
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In this variational design of a numerical method, three basic hypotheses are used. 
At this point we will cover the f?rst two. The first hypothesis follows. 

Conservation laws valid for the true solution of the dijferential equations should 
also hold for the finite-difference solution. 

Using this principle, (4) should be written in the following form: 

C [(~/2)@ + v”) + (g/2) h”1 = To, (7) 

where To, the total energy, may be determined from initial values alone. The 
second hypothesis relates the solution of (7) to the forecast values. 

The solution (u, v, and h) is also a stationary value that minimizes a weighted sum 
of the variances of (u - zi), (v - 5) and (h - i;>, integrated over the entire domain. 

Based on these two hypothesis, a variational formulation of the problem is now 
easily made. 

The functional 

J = 1 [E(u - u’)” + G(v - fi)2 + fi(h - h”)2] 

+ b jx KWNu2 + v”) + (g/2) h21 - To/ 

will have a stationary value if its first variation equals zero, 

SJ= 0, (9) 

where 8 is the variational operator. In (S), the summation C is taken over allj 
points, ~5 and fl are weights which will be determined later, and h, is the Lagrange 
multiplier which is constant with respect to space but possibly varies in time. 
Taking the fist variation of (8) with respect to u, v, h and X, V 

SJ = 1 [2a(u - zi) Su + 2Z(v - 5) So + 2fl(h - h) Sh 

+ Mf(u Su + v 6~) + Xegh Shl + Sh, /z [(H/2)(u2 + v”) + (g/2) h2] - ToI. 

After rearranging the equation, 

SJ = 1 [(2d(u - 22) + X,Hu) su + (2Z(v - G) + h,Hv) sv 

+ (2/3(h - h) + &gh) ahI + ]I [W/2)(u2 + 0”) + (dW21 - p/ ah,. 
(10) 

Since the variations Su, Sv, Sh and S& are arbitrary values (nonzero), the coeffi- 
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cients of each variation must vanish individually in order to satisfy the stationarity 
condition. This leads to the so-called Euler-Lagrange equations: 

2G 
’ = 28 + jjEH ‘il ill) 

and 

h = 37 ji 
28+&g ’ 

c IW/Wu2 + 0”) + (g/2) h21 = To. 

(13) 

(14) 

Note that the last equation (14) is simply the total energy constraint, Eq. (7). 
Now the third hypothesis is introduced, which will concern the determination 

of the weights h and 8. One of the weights can be taken to be unity, say C% = I. The 
only the ratio of fl to I%!, called a relative weight, need be determined. The third 
hypothesis is therefore concerned with the determination of the relative weight: 

The relative weight is chosen to make the fractional adjustment of variables 
proportional to the fractional magnitude of the truncation errors in the predicted 
variables. 

The fractional adjustment of u and o is 2G/(2& + AeH) and that for h is 
2b/(2p + X,g). If the u, P, and h trunctation errors have the order of magnitude 
O(d t2, dy2), the hypothesis leads to 

(15) 

where X is the fractional adjustment rate. From (15), we can easily solve for the 
relative weight, 

p/gla = g/H. (16) 

If, for instance we chose L% = 1, p becomes g/H and the weights a and p are speci- 
fied. 

We now have four unknowns, namely, U, II, h, and XE , and four Euler-Lagrange 
equations (1 l)-(14). Through Eq. (15), the variable A, may be replaced by X. The 
unknown X is solved from the equation which will be derived by substituting u, a, 
and h from (1 l)-(13) into (14), giving 

X2 c [(H/2)(3 + 6,“) + (g/2)@)] = To, 
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or 
x = 1 TO/E [(H/2)(fP + 62) + (g/2)(@]/ 1’2. (17) 

Substitution of this X into (1 I)-( 13) yields the solutions U, u and h, respectively. The 
Lagrange multiplier A, is given by (15) as function of X, 

A, = 2Z[(l/X) - l]/H . 

= mwm - 1 l/s. 
(18) 

3. VARIATIONAL DESIGN II (WITH A NONLINEAR MODEL) 

The technique described above for a linear equation system may be extended to 
nonlinear systems. A simple example will be shown in this chapter. 

We consider a nonlinear form of (l--3), 

a@4 at + g (a hu) -fho = 0, (19) 

Wu) --~(~h~~)+fhu+g~(~)=o, at (20) 

where h is the depth of the fluid, which was the height anomaly in the linear system, 
but is now the total depth in the nonlinear system. 

The energy conservation law is written as 

I ” [(h/W2 + ~7~) + (g/2) h21 & = CT), 
111 

(22) 

where (T) is a constant. The conservation may be written in a finite difference 
analog as: 

TE = c [(h/2)(u2 + 0”) + (g/2) hz] = To, (23) 

where To is the value of TE at t = 0. Let &, zi, and d be the values predicted 
for the (n + 1)th time level by using a set of finite difference equations 
corresponding to (19)-(21). 

We now formulate the variational problem as we did for the linear system. The 
functional J becomes 

J = C [&(u - 6)” + Z(P - a)2 + ,&h - h)2] 

+ A, IC [(h/2)(u2 + ~3 + (g/2) h21 - ToI. (24) 
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The stationary value of the functional results from setting its first variation to zero. 
The resulting Euler-Lagrange equations are 

and 

2@ - zi) + h,hu = 0, 

2&(tr - a) + X,hu = 0, 

2f!(h - h) + A&* i v3/2] + h,gh = 0, 

(25) 

(26) 

(27) 

1 [(h/2)(u” + u’) + (g/2) h2] - To = 0. (28) 

The numerical solutions U, U, h, and hE may be obtained by an iterative technique. 
The author tested a semilinear iterative technique. First, assuming H w h, the 
solutions u, V, and h are approximated as follows: 

u + [24(2Z + h&f)] I, (29 

v G= [2G/(2Z + X,H)] 5, (30) 

h s P/7/(28 + A, g)l h’. (31) 

Note that these expressions have the same form as those of the linear system. Addi- 
tional simplification is obtained by limiting the magnitude of XE to be sufficiently 
small that the equation for XE obtained by substituting U, v and h from (25)-(27) 
into (28) is linear. The magnitude of XE depends on the variances (ZJ - ti)“, (V - G)2, 
and (h - @2. If the finite-difference scheme is fairly accurate, large variances should 
not occur in only one time step. 

If the difference between To and the total energy TE computed from the fore- 
casted variables was less than an arbitrary limit (lo-’ times To was used), no 
adjustment was made. For typical differences, the error was reduced below the 
limit in one or two iterations. 

Another integral invariant appropriate to equations (19)-(21) is the total mass. 

s Ye 
h dy = constant 

I1 

or in a finite difference analog, 

C h = ho, 

where ho is the value of C h at t = 0. This constraint could be enforced by adding 
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&(C h - ho) to the functional J, where X, is another Lagrange multiplier. However, 
a simpler approach has been found successful for this experiment. The mass 
conservation constraint was treated separately from the total energy constraint. 
The depths forecasted by the finite-difference equations were first adjusted to 
achieve mass conservation as follows: 

h = h’ - (c L - hO)/jm, 

where j = 1, 2 ,..., j, . Then using these corrected values for 6 in (24), the total 
energy constraint was applied as described above. The entire process is summarized 
below: 

1. Computation of h, 22,6 by a set of prognostic finite-difference equations. 
2. Adjustment of h’ to ensure total mass conservation. 
3. Solution of the Euler-Lagrange equations to enforce the total energy 

conservation. 

Steps 1,2, and 3 were taken for each time step in the experiments. Then the total 
mass was rechecked. If a significant error occurred, the mass adjustment was 
repeated and the total energy rechecked. Normally, no more than two repetitions 
of this procedure were necessary. Satisfactory results could probably be obtained by 
applying the adjustments less frequently, although this idea has not been tested. 

4. &3fARKS 

Numerical tests of the variational scheme with the linear system (l)-(3) showed 
quite satisfactory results compared with the corresponding analytical solutions in 
terms of numerical accuracy and computer speed. One of the tests was made by 
using the so-called forward scheme to compute z&5, and 2;. The forward scheme 
employs centered space differencing and forward time differencing for the space 
and time derivatives, respectively. The scheme is known to be computationally 
unstable, but the total energy constraint puts a bound on the amplitude of zi, 6, and 
l, prohibiting the instability (Sasaki, [14]). The unstable scheme, however, amplifies 
the shorter waves more than the longer waves. In another experiment, the spurious 
short wave amplification was to a certain extent avoided by applying simple arithme- 
tic smoothing to h, zi, and 6 before enforcing the total energy constraint. Some non- 
linear experiments were conducted in which the governing Eqs. (19)-(21) were 
integrated under the constraints of total energy (22) and total mass (32). The 
numerical integration followed the procedures described in Section 3. Although no 
analytical solution is available to compare with the numerical solution, the 
numerically integrated results are quite satisfactory. 
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